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SECTION 1

INTRODUCTION AND SUMMARY

1.1 PURPOSE

The purpose of this study is to develop a multi-sensor, multi-target data association technique

applicable to ASW platforms utilizing long range passive/active sonars in a convergence zone ocean

environment.

1.2 GENERAL PROBLEM DESCRIPTION

Advanced passive sonar systems can detect and track targets at long range while operating in a

convergence zone (CZ) multi-target environment. These tracks are not continuous, hence inter/intra

CZ fading gives rise to the need for Temporal Association. Since these tracks may be viewed

simultaneously by different sensors, Mutual Association is also required.

For many operations, only passive sonars are used; however, provision must be made for active

sonar, surface radar and sensors on other/supporting platforms. With passive operation, bearing and

frequency tracks are assumed to be smoothed to obtain at least the mean bearing/frequency and

corresponding rates.

Two target types are common; submarines and surface ships. Typical, North Atlantic, surface

shipping tracks of 12-hour duration are shown in Figure 1-1. A typical bearing-time history for a long

range passive sonar in the circled area is shown in Figure 1-2. The gaps/fades in the tracks are due to

the high propagation loss that exists between convergence zones. The long-term data association

problem is to bridge these gaps using the bearing-time data shown as well as other available measurables

such as bearing rate, frequency rate, active sonar range/bearing and surface (radar) data.

1.3 BACKGROUND

In 1977, a GE study sponsored by NOSCt'addressed the data association problem for a surface

ship employing hull and towed arrays. The development of the Expected Likelihood approach started

at that time. A two-stage look back approach was simulated using the data of Figure 1-2. Although

many assumptions/simplifications were made, the approach appeared to be better matched to the

problem than other known/existing techniques. Essentially all of the existing techniques assume good

observability and Maximum Likelihood related measures. SI Chou discusses the Expected Likelihood

approach in a recent NOSC report( 3

i 1-
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Concurrently with the above study [ 1 , a data association process was developed in the GE

simulation facility for surface ship ASW. It was based on a weighted sum of geometric, frequency and

classification correlation indices (not based on likelihood techniques). Recently some of the bearing,

frequency techniques described in this report were compared with this process and found to be an
12]improvement [ .

1.4 SUMMARY

Starting with probability of association as the fundamental association measure (utilizing prior

target and environment models), the Expected Likelihood Ratio emerges as the key measure. This

measure is the weighted average of the likelihood function with averaging taking place over elements

of the target state vector; the weights are the prior probability density function of these elements.

Complexity was reduced by careful choice of the state variables and appropriate simplifications.

For long term (CZ to CZ) association, the best variable choice was considered to be range/bearing at

two time points (reference time (to) and candidate time (tj)). The averaging process then reduced to an

integration over only two variables; the range pair (R 0 Rj). For short term or simultaneous/mutual

association the preferred state variable set was range, bearing, target speed and heading. The reduction

again resulted in a two variable integration process; range and heading. I
Thus, two Expected Likelihood Ratio algorithms evolved: (1) long term, applicable when At is

long (e.g., greater than 30 minutes) and (2) short term (e.g., At less than 30 minutes).

The long term (CZ - CZ) algorithm is given in Section 4. In the numerator note that array

gain/propagation loss is factored into the detection term, target speed/heading priors in the target term, A

geometric measurements in the Fy term and frequency spectra in the last term. Integration is over the

range pair (RoRj) where Ro is range at the time of the reference segment (o) and Rj is range at the time

of the jth candidate. The denominator is a relatively simple normalizer with one integral for each

segment. The short term algorithm is similar in form, but differs in detail as described in Appendix A6.

1.5 ASSUMPTIONS

a) All targets are of the same general class and hence no distinction is made between surface

ship and submarine targets.

b) Targets are non-maneuvering.

1.4
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I c) Measurement errors are gaussian and independent.

d) A priori target/environment statistics are known.

e) Geometric and frequency spectrum data are the only measurables/attributes; classification,

demon data, etc., are not included.

f) Segment estimates of mean bearing, bearing rate, etc., used as inputs to the association process

Ihave previously been correctly correlated/associated and bad data edited out.

11.6 CONCLUSIONS AND RECOMMENDATIONS

gThe Expected Likelihood technique developed in this study provides a practical approach to the

problem of associating data segments with diverse attributes; geometric and frequency spectrum were

included but others can be added. Prior target statistics (e.g., speed/heading) and detection/environmental

prediction (e.g., probability of detection versus range) are incorporated with few restrictions on the form

gof the statistical models. The formulation does not depend on having a range estimate and other initial

conditions and hence will work long before localization solutions become available. The formulation is

general enough to include the mutual and temporal association of data segments from different platforms

and hence applicable to a wide variety of sonar/radar sensors including single/multiple ship hull/towed

arrays, offboard sonobouy/arrays as well as radar and other surface sensors.

Recommendations for further study are as follows:

I a) For a given current segment a likelihood ratio is computed for each past segment, one at a

time; a so called single stage process. A significant improvement is expected when the two

stage (two past segments) process is implemented.

b) Additional attributes should be included in the likelihood ratio formulation including at

least: Demon signatures and classification decisions. The current study assumed that all

targets are of a given class, namely surface ships at constant course and speed; maneuvering

targets/subs should also be included in the process.

c) Another important improvement is to determine how to make better association decisions

given the likelihood ratio measures. Some work was done in the current study but more is

requ, 4.

1-5



d) Trade studies should be conducted so that design decisions can be made. A good example of

this is: should the amplitude or clipped frequency spectrum be implemented? This is a

performance vs complexity trade.

e) The ASW simulator should be further exercised to provide evaluations of the association

techniques for trade studies, technique tuning and assessing the payoffs for improvements.

f) A study should be performed to determine the information/data rate currently available

from existing sensors/platforms/data links. The payoff for more data and/or additional

sensors should be determined to provide planning/requirements inputs.
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SECTION 2

FORMULATION OF ASSOCIATION MEASURES

As a target is tracked through a convergence zone, the resulting smoothed data set is defined as a

segment. For a typical ith segment at time ti , the data is defined by Zi or Zi(ti). Three types of data

are included: Detection (Di), Geometric (Yi) and Frequency Spectrum (Si) so that

Zi= [Di Yi Sil (1.1)

A current or reference segment is identified by subscript o (i.e., Zo), a candidate segment set by

subscript j (i.e., Zj) and the remaining segments by subscript k (i.e., Zk). Thus, the total data set is

defined by the alternative forms.

Z = Zojk = IZoJZk] = [ZoZ j Zk]

In general, the candidate segment set can include more than one segment. These definitions are

illustrated in Figure 2-1.

The problem is to find the best match between a current/reference segment and various candidate

segment sets (j = 1,2,...).

BEARING *

OTHERS
ZgK

CANDIDATE SET #I' T 7, &- b dJ
Zj-
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Consider the general association problem of determining "how well" a current data segment (Zo)

matches with the jth candidate (Zj). The measure of association is given by

Foj = P (Aoj I Z) (2.1)

This is the probability of association of the o and jth segment set conditioned on observing the

complete segment set (Z).

As shown in A1 (1), application of Bayes' rule and manipulation yields

F Ai P (Ai) (2.2)
OJ P(Z) / P(Z I A-)

The key element is the Expected Likelihood Ratio (A oj) and hence the focus of much of the

subsequent development. The other numerator term P(Aoj) is the a priori probability of association

of the current/candidate set (Zoj). The denominator is a function of the total data set (Z) and hence

is a normalizing constant during subsequent comparison/thresholding of the candidate sets. P(Z) is

the unconditional density function of Z. A is the condition that none of the segments are associated.

If the formulation allows for only a single past segment then, as developed in Al

AoJ (2.3)J -P m m

where P is the probability that a past detection occurs and m is the number of past segments observed.

(1) Throughout this report Al, A2, BI, etc. are appendices. For instance, A2 is Appendix A,

paragraph 2. When an appendix equation is referenced, it is designated by (), i.e., A2 (4).
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I
LIKELIHOOD RATIO

I The expected likelihood ratio for the current o and ith segment set is given by (refer to Al)

P (Zoj I Ao)
Aoj = P(Zoj I Aoj)

/ To simplify notation the oj subscripts will be omitted and n, d used to designate the numerator

denominator so thatI
A An/Ad (2.4a)I

This expresses the a posteriori probability of receiving Zoj with the condition that the segments of

z have a common origin and hence are associated (Aoj). The non association condition (Aj) applies

to the denominator.

I
A state vector (X) is used to predict the measurables (Z).

I
The approach used to develop the numerator and denominator is to write the joint measurement/

state probability density function (pdf) and then integrate out the state variables, thus as shown in A2,

fP(Zoj I X) P(X) dX

A PZ~XPXd LP~ 2 ~ x (2.5)
ifpzoI X) (Xo do I- ~zjI j)P(X) jI

where the association condition is implied for all P().

The conditional density functions (i.e., P(Z o I Xo)) are likelihood functions and the others

(i.e., P(Xo)) are the a priori (prior) probability density functions of the state vectors (i.e., Xo).1
P(Zoj I X) is the product of the likelihood functions of each measurable in the oj segments. The

Idenominator integrands apply to each segment. If the jth candidate consists of multiple segments then

the X integral is replaced by the product of multiple integrals; one for each segment in the candidate

set.
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NUMERATOR - A n

Consider first the numerator of (2.5). The state vector (X) consists of Geometric and Spectral

(frequency) elements and hence will be expressed as X = [XG, XS ]. The geometric state variables

selected for long term (CZ.CZ) association are given by

XG = [Ro0 o R1J0j (2.6)

where,

Ro0 o 0 = Range and bearing at reference/current time (to)

Rj0j = Range and bearing that applies at the time of the most recent segment of
the jth candidate set (tj).

Using the form of Z given by (1.1) the numerator of the likelihood ratio as developed in A3 is

given by

An f fP(XG ) P(DojlXb) [V(YojlDoj XG) d0oj ] P(SojDoj Xb) dRo (2.7)

._. F y

where R0 oj6 are shorthand notation for RoR j and 0o0j respectively, primed state vector notation

(XG) means that the state variables 0 o and 8j have been replaced by the measured values (0oOj).

The terms of (2.7) are:

" P(Xb) - A priori pdf of target state (Xb).

" P(DojiX') - Joint probability of detection of each segment conditioned on Xb. This
factors in the environment (propagation loss/convergence zones).

" Fy - The geometric measurement likelihood function given RoRj .

* P(SojlDoj Xb) - The frequency spectrum likelihood function given Xb.

Note that all of the non gaussian terms are outside the 000j integral thereby allowing an analytic

evaluation of F y. This is valid for the long term (CZ-CZ) association but not for short term association

(e.g., within a single CZ).

2-4



I
For short term including mutual association, refer to A6.

I
DENOMINATOR - Ad

I Now, consider the denominator of (2.5) designated by A d It is the product of terms A di where

the form of each term is identical except for the subscript identifying the segment (i=oj).

Consider a typical oth segment having measurables 00 f. As developed in A4,

A P( 0'o) [JP(Ro) P(DoIRo) P( 0ofoIDoRo) dRo] P(SoIDo) (2.8)
0R o

where P( 0o) = A priori bearing state pdf evaluated at the measured bearing.

P( 0of-1DoRo) = pdf of bearing rate and frequency rate conditional on detection and range.
Since 6f (predicted) are a function of cross range rate (X), in addition to R,
it is computed by (o subscript is implied)

P(0fSDR) = f P(fIDRX) P(X) dX (2.9)

x

COMPLETE A

Thus, An is given by (2.7) and Ad obtained as the product of terms like (2.8). Substitution into

(2.5) yields the complete expected likelihood ratio given by (iT is product notation)

f f P(Xb) P(DoDjlX6) Fy As(X6) dR o dRj

A = R(2.10)
IT f P(Rii) P(DiRi) P(eifiIDiRi) dR i
i Rj

where the expected likelihood ratio of the frequency spectrum data is given by

P(SojlDoj A XG)As(XG)= (2.11)

I P(S0 jlD°J A X6)

Note that the denominator (normalizer) terms of (2.10) are relatively simple and are computed only

5 once for each segment.

I
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SECTION 3

TERMS OF EXPECTED LIKELIHOOD RATIO

State Prior

P(Xb) is the prior pdf of target state (geometric) with the Q0j replacements. As developed in A5,

P(Xb) = P(Ro) P(go) P(VY)'J (3.1)

P(Ro) and P(0 o) are prior distributions of range and bearing. Typically these are assumed

to be uniform distributions.

P(V 7 ) is the prior pdf of target speed and heading where the arguments (V and y) are computed

from the state variables (R 0 oRjij) and the inferred times (tot ). Assuming a uniform heading
1~

distribution (P(y) =L-) and target speed normally distributed with mean V and variance aV then,

P(VY) = )(1) NV (3.2)

where V is computed from Xb and the time difference (At0 j) as given in general by the vector

equation (Do is the displacement vector of sensor location at to relative to sensor location at tj)

V = 0 + R o - Rj I /At0  (3.3)

The Jacobian (J) transforms the Rjoj variables into Vy variables as given by

R.
J = (3.4)

Thus, P(XG) (3.1) is easily computed for the measured values (0oj) and the assumed ranges (RoR).

(1) N(.) is notation for a normal distribution as given by

N_ e1/2
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To visualize the effect of this prior state density term (P(XG)) within the RoR j integral of (2.10),

consider the following as developed in B2. For every Vy value (given 0 oj) corresponding RoR j values

can be computedhence points in Vy space can be mapped into RoR. space as illustrated in Figure 3-1.

Assume first that V is set at its mean value (V) and y allowed to take on all values (0 to 21).

The resulting contour in RoR space is an offset ellipse tilted at 450 as illustrated in Figure 3.1 (dashed

ellipse). The contours for ±oV are also shown.

For the given bearings, the ellipse offset is proportional to own ship speed (Vo)(1) and the semi

major/minor axes are proportional to target speed (V). Thus the la V-y distribution (also shown in

Figure 3-1) maps into RoR j space as illustrated. Within the lo region of RoR j space, P(V'Y) will

be high, decreasing to negligible values elsewhere.

S 0 1* V-

81-584 %"-
Figure 3-1. Target State Prior in RoR i Space

Now consider the development of the second term in (2.10); the detection term.

DETECTION

P(Doj J Xb) is the probability of detection occurring at times totj . Neglecting array gain variation

with bearing, then probability of detection is a function of range only, so that

r(Do 9. X ) -f P(D o I Ro ) P(D i Ro0R j)  (3.5a)

If the (oj) measurements are made from different platforms (e.g., two ships or offboard arrays)

then offset is proportional to platform separation

3-2
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If more than a single candidate is included in the jth segment set, the additional segments

= 1,2,...) result in an additional factor; the probability of detection for these segments so that

P(DOj I X') - P(D o I Ro) P(Dj I RoR)rr P(D I R 1 (XG) (3.5b)

where range (R I) is predicted from XG at the applicable times (t I).

As previously discussed, a target is tracked through a convergence zone and smoothed to obtain

an estimate of Yi (e.g. bearing, bearing rate and frequency rate). The time where the estimate applies

is typically set at the track midpoint or endpoint. If this is the only time information used (total track time

information ignored) than the P(DIR) function would be derived from the propagation loss/signal

excess/probability of detection curves.

MEASUREMENTS

Fis the measurement term of (2.10) as given by

F = P(Yoj I Doj XG) do j (3.6)

Assuming the measurement errors are normally distributed, then

Fy = P fi e'%AYTWy Ydeooj (3.7)

AY is the difference between the measured and true values; AyT is the transpose of &Y. Due to

the conditioning (XG) in (3.6) the true values are predicted from XG.

Wy is the inverse of the diagonal measurement covariance matrix (My). My has elements such as
o 2 , o. 2 , etc. Note that 0 o and 0o are uncorrelated with midpoint smoothing.

0 00

iWyi is the determinant of Wy.

Ny is the number of measurements.
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As shown in C1, the solution to (3.7) is

= .IW e. AA yT y1 Y
y J(2i) (3.8)

where L.Ky.J L-Q y..-J i

W = W 1 -(WIH 1 ) (W0 + HITW1 H1
)' 1 (WIH1)T  (3.9)

A Y1 is the difference between the measured values (excluding 0o) and those predicted from

XG. Recall Xb= IRoR j J.

W0 is a diagonal 2 x 2 inverse covariance matrix with elements (1/0 2' 1 2a"2
0 J

W 1 is a diagonal Ni x N1 inverse covariance matrix with reciprocal variance elements such as

(1/o 2 , 1/o 2, i/Uo, i/oj ). Note the variables included are all the measurables except0 0j.

Hi is the partial derivitive matrix of the Y1 measurables with respect to 0 o (8 ofo~j5/a0 0j).

Ni is the number of measurables exceeding the two bearing measurement, i.e., N1 = Ny (the total

number) -2.

Note that the calculation of W given by (3.9) is fairly simple since the inverse is only 2 x 2.

Refer to C2 for an approximation to (3., 3.9) and C3 for an example.

It should be noted that the results given by (3.8) are general and apply to the association of more

than a single past segment.

To illustrate the effect of this Fy term within the RoR. integral of (2.10), consider the following:

Assume that 9o and fo are measured in addition to 0o 0j.Using an approach similar to that of Figure 3-1

the la 0o o contour maps into RoR space (refer to B3) as illustrated in Figure 3-2.

3-4
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R, b

Figu~a 3-2. Rate Measurements in R0 Rj Space - Track o

Figure 3-3 shows the 10 contour of i0f (from Figure 3-2) and also a corresponding contour for

the jth segment.

/ / {±L ACK i/7/7I4

3 Figure 3.3. Rate Measurements in R011) Space - Tracks o and j
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The amount of overlap shown by the shaded regions is related to the magnitude of Fy, the

conditional (RoR) likelihood function of the geometric measurables.

FREQUENCY SPECTRUM LIKELIHOOD RATIO

The frequency spectrum likelihood ratio (AS ) is developed in Appendix D and E for two segments
with spectra So,S j . In the A formulation of (2.10) the spectrum likelihood ratio is conditioned on X
and hence AS should be evaluated for all the RoR combinations in the integral (summation) of (2.7).

The formulation in Appendix D assumes that the spectra have been compensated for doppler shift (a

function of range rate difference (Ait)), where ARi is determined from XG. The formulation also assumes

that the distribution of receiver amplitude for any given frequency cell is the same for each segment.

This implies that the range dependence is ignored. A summary of the results of the frequency spectrum

development is as follows.

The general result is given by

AS = nI 52 ?221 [A 1 x11 + 121 Ko (3.10)

A An2 A n 1

i is product notation. n2 is the number of frequency cells that match. A match is said to occur when a

line in segment o and one in segment j appears at the same frequency (after doppler correction). n1 is

the number of cells where there is a mismatch (a line in only one segment). AS2 and AS1 are functions

of the amplitude of the lines and the Aterms are constants derived from the a priori statistics.

AS2, the "match" likelihood ratio, is given by

AS2  ( e ) e-12 2 e PF6S0(3.11)
2 "PF
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I where

w AS = ( -S ) = the amplitude difference (db)

a = amplitude fluctuation std deviation (dB)

5S = ave amplitude relative to threshold

PF = probability of fade.

AS1, the "mismatch" likelihood ratio, is given by

SE1 e. 8~ (=-)
AS1 = 2 8( 2 (3.12)

where

SE = amplitude relative to the threshold (dB).

These two A terms are illustrated in Figure 3-4.

The X and Ko terms are a function of the a priori statistics of the target and extraneous lines as

developed in Appendix D, E. Definitions of these statistics are

nT = mean number of target lines.

nE = mean number of extraneous lines

PF = probability of fade

n C  = number of cells

and,
nE = nE + (1-PF/ 2 ) nT

Substituting the A's from Table D-1 of D4 yields

A8 n 2  ( (l.PF) nT nC [j PF T nE (3.13)FAS 1 2A 2  )+ 11 1n I  $1 2E, n e (3.13)

~3.7



(a) MATCH CONDITION

1 2 S6 NORMALIZING CONSTANTS

As2 A52' 24 'FJ

A~~~2r PF5 ' ~

0 a-

fb) MISMATCH CONDITION S-

1S _ Sm* -T
0

0= 1

0 1 2 3

81-585

Figure 3-4. Frequency Spectrum Likelihood Ratio Components
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I If amplitude data is not made available, the spectrum is referred to as "clipped", then only the

frequency cells containing a detection are available. For this case, AS2 and AS1 are unity and hencen2 
n

the products (e.g., 2iI( ) ) can be replaced by the exponent form (e.g., ( )n ) so that

(1 - PF) nTnc ]n2 [pFnT+2nE

AS = [ enT(l "PF) (3.14)n 2  

2n E '

Consider a typical case where PF = .2, nT = 2, nE = 2 and nC = 400 (nE' = 3.8).

then,

AS = (44 + 1)2 (0.05 + 0.53) 16

or (3.15)

Log AS = 1.65 n 2 - 0.24 nj + 0.78

This function is plotted in Figure 3-5.

Another approach was initially used to develop the spectrum likelihood ratio (Appendix F). It was

dropped in favor of the approach of Appendix D basically for two reasons; amplitude information is not

utilized (clipping is assumed) and no extraneous lines are included.

DENOMINATOR TERMS (Reference (2.10))

* P(RB) - State pdf R and 0 are considered essentially independent so that

P(RiO i ) - P(R i ) NO i )  (3.16)

0 P(DI R) - Same as numerator detection terms.

1 * P(f iDR) - As shown in A4, this pdf is obtained by including relative cross range rate (X) and
integrating it out as given by

P(ifhDR) = fP( filDRx) P(X) dX

I 39
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2 2
Assuming normally distributed Oferrors with variances (uai ~ then,

I .2

Assuming normally distributed a priori target speed with mean Vand variance aVand uniformly

I distributed target heading then,

I()~ f~;Nv.? J2X2 dV (3.18)

where XT is taret cross range rate (XT = k + io) ko is own-ship cross range rate.

This function is shown in Figure 3-6 for V = 15 kts for =, 0. For finite X0., simply shift the

curves left by an amount Xo

.05-

X1(KIJOTSOT-)

81-323

1 ~.3--1
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I SECTION 4

ILIKELIHOOD SUMMARY

This basic A expression and the terms included are summarized below. (Refer to Appendix A.)
Sff P(Xb) P(D 3j1 X'G)" Fy. As(Xb)dR oR j

A R6 (2.10

A = i P(Rii)" P(D i I Ri ) P(Y I DiR i ) dR i (2.10)

Target State Prior

P(X) = P(Ro). P(0 0 ). PV7J (3.1)

Detection

P(DojIXG) = P(DoDj I RoR j ) 'rlP(D, I Xb) (3.5b)

Measurements (Geometry)

Fy = Ky1 eAy1T WAY 1  (3.8)

Measurement (Spectra)

AS(XG) = 2 [A.2 '21 + 1]n, JAs 1 X1 1 
+ A12] " e n T  (3.10)

Mapping of the a priori speed/heading, detection and measurement densities into range (RoRP)

space as previously discussed is shown as a composite in Figure 4-1. Note that bearing rate and

frequency rate are the only measurements included here. Normalization (Ad), the Rj factor of

(3.4) and the frequency spectrum term are not included in this illustration.

I The association measure A is proportional to the summation, over the RoR j space, of the product

of terms in (2.10). Thus only the regions of overlap of all three terms of Figure 4.1 will contribute to

the sum. Note that the primary contribution is from the zones at RoR. = 60 ,90; the true range pair.

I
A block diagram showing the process used to compute A oj and Foj is shown in Fieure 4-2.

I
I 4-1
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APPENDIX A - ASSOCIATION MEASURE AND LIKELIHOOD RATIO DEVELOPMENT

Al - DERIVATION OF ASSOCIATION MEASURE P(Aoj I Zojk )

The general problem is to determine how well a current/reference segment (subscript o) associates

with one or more candidate segments (subscript j). The remaining segments are identified with sub-

script k so that the total data set is defined by Zojk. Thus the probability of association of the current

(o) and candidates (j) given all the data is expressed by

Foj = P(Aoj I Zojk )  (1)

Note that the j and k segment sets consist of one or more segments.

Applying Bayes' rule yields

Zoik) =P(Zojk I Aoj) P(Aoj) (3)
P( Zojk)

Consider the first numerator term. The k subscripted segments are not conditioned by A0 j

thus

P(Zojk I A0 j) = P(Zoj I A0j)" P(Zk) (4)

Consider the following simple equality

P(Zo). IP(Zjl) • P(Zj2 )... I
P(Zk) p(Zo). Ip(Z1 1 ). p(z, 2 . P(Zk) (5)

Note that the numerator is

P(Zo , Z1, Zk1 Aojk).6 P(Zojk I Aojk) (6)

Where Aojk is the condition that the ojk (i.e., all) segments are not associated.

I
i A-i



Also note that the denominator is

Thus (5) can be written as

P(Zk- P(Zojk I Aoik) (8)

Sul~stituting into (4) yields

P(Zojk I Aoj) = P(Z01 I Aoj) P(Zojk I Ao0 k)(9
PZ I xAj)

Then substitution into (3) yields

P(Aoj I Zojk)= [PZ 0 J Aoj)j P(Zo ojk) P(A 03 ) (10)
.PZjI A1)P(o

Note that the first ratio is the expected likelihood ratio (A j) and the last term the a priori

probability of association of the oj segments. Since subscripts ojk indicate all the segments, it may

be clearer to drop them so that

PAjIZ) - A03 ) P(IA ) I(1

where

P(Z0 j I A03 ) (2

- A03 =P(Zoj I Aoj)

If the past candidate (subscript j) consists of only a single segment then the denominator of (11)

can be formulated as follows.

A-2
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For m past contacts of which none or one are associated with the current (o) segment then

I m

P(Z) = P(Z I A) P(A) + - P(Z I Aoi) P(Aoi) (14)

Substitution into (11) yields

P(Aoj I Z) A (15)
P(A) m P(Z Aoi) P(Aoi)

P( 0)+ 2; 1__ _ __ _P(Aoj) P(Z A) P(Aoj)

Note that

P(Z I Aoi) P(Zoi I Aoi) (16)
P(Zoi I Aoi)

= AoiP(ZI A)

Assume that all P(Aoi) are equal and substitute (16) into (15) to obtain

, Ao

P(Ao I Z) = (17)
P(A) m

+ 2:Aoi
P(Aoj) i

Assuming a diffuse prior where Pg is the probability that the correctly associated past segment

exists in the set of m segments. Then P(A) is the probability that it does not exist as given by (1-Pg).

P (Aoj) is the probability that the j th segment is associated with the o segment as given by Pg • 1/m

so that the first denominator term is ((1-Pg) I Pg) m. Thus,

A oj

P(AojIZ) A1Pg m (18)

m + Z Aoi
\Pg

A2 -A FORMULATION

I The oj subecript on A will be dropped for simplicity, from A1(12)

A P(Zoj I Aoj)

P(Zoj I Aoj)

A-3U



Since segments o and j are unassociated (denominator) they are independent so that

P(Zoj I A0 j) = P(Z o ) P(Zj) (2)

These density functions can be evaluated by forming the joint measurement/state density function and

then integrating out the state variable so that (association condition implied in each integrand)

f P(Z jX) dX
X

A f~o P(zoXo)dX o  j P(ZjXj )d (3)

Since P(Zoj X) = P(Zoj I X) P(X) and similarly for P(Z X) and P(Z X) then,

SP(Zoj I X) P(X) dX

A = p(Zo I Xo) P(Xo) dXo fP(Zj I Xji) P(X i) dXj (4

A3- An FORMULATION

An is defined as the numerator of A (refer to A2 (4)). Thus,

An = fP(Zoj I X) P(X) dX (1)
X

where X consists of geometric (XG) and spectral (XS)state vector components (X IXG XS]).

The measurement vector consists of detection (D), geometric (Y) and spectrum (S) elements

(Zoj = |DYS]oj) (refer to Section 2 (1.1)). Expanding the first intergrand term yields

P(Zoj I X)= P(DYS I X) (2)

= P(D I XGXS) P(Y I DXGXS) P(S I DXGXS)

where subscripts (oj) apply for DY and S. The detection event is conditioned on source spectra (XS),

a fairly complex relationship hence the XS conditioning will be removed from the first term. The XS

condition is irrelevent in the measurement (2nd) term and hence will be dropped.

A4
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Then, substitution into (1) yieldsI
A n f f P(DIXG) P(YIDXG) P(SIDXGXS) P(X P(Xs) dXSXG

XG XS

- f P(X G ) P(DIXG) P(YIDX G ) I f P(XS) P(SIDXGXS) dXS ] dXG (3)
XG XS

L - P(SIDXG) -

The geometric state variables selected are range and bearing for both the current (o) and the most recent

past segment (j) so that

XG = [Ro0 oRjlj] (4)

where the corresponding times (totj ) are implied.

Bearings (0o0j) are always measured. (-) will be used to identify measured values.

Thus, from (3)

An = f P(XG) P(DIXG) P(YIDXG) P(SIDXG) dXG (5)
XG

Since P(XG) is a weak function of 0o0j, a good approximation (1 ) is to assume that the state

variables o0j equal the measured values (0o0j). Prime (') will be used to indicate this substitution,

i.e., P(XG) *P(X6). The same applies to the detection and spectrum density functions. Thus all except

the measurement density P(YIDXG) can be moved outside the 0o0 integral so that

An = f f P(X() P(DIX6) [ff P(YIDXG) d0o0j ] P(SIDXG) dRoRj  (6)RoRj Oo~j

L- Fy

(1) This is a good approximation for temporal association where time between segments is large

(> 30 minutes) as it is for segments in different convergence zones. For short times another
formulation applies (Refer to A6).

. ,,n, wn~, u nm mmun m nmm ummm lnm-n5
m



mI

A4 -Ad DEVELOPMENT

A d is defined as the denominator of A (Refer to (2.4a). The state variables selected are range, I
bearing, range rate and cross range rate. Thus for a typical o th segment

XG = Ro0okoX °  (1)

IThe spectrum component of the state vector is XS , thus for a typical segment (similar to A3(3))

Ad o  = ff P(DoIXG) P(YOIDoXG) P(SoIDOXGXs) P(XG) P(XS) dXGXS (2)

XGXS !

Assuming detection is a weak function of bearing (omni array gain) then

P(DOIXG) = P(DoIR) (3)

Assuming that the measurables are bearing, bearing rate and frequency rate (0 00 ofo) then, with

o subscripts implied,

P(Y I D XG) = P(9'I D O) P(0 fi D RX) (4) 1

Note that R is not included since 0 f are a function of R and X only; not R. 1

The spectrum is only a function of range; doppler shift for a single segment is irrelevent so that

P(S I D XG) = P(S I D R) (5)

The state variables are essentially independent so that

P(XG) = P(R) P(0) P(It) P(X) (6)

A-6
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Substitution for these four functions into (2) and separation of integrals yields[
Ad = [fP(e0)P(0)d0]

tfP(D I R) I f P(S ID RX S ) P(XS) dXSJ (7)iR XS

•f P(6 iI DRX) P(i)di! P(R)dR I  fP(i.) d
X F

P(b f I DR L -unity.-J

IThe first integral reduces to the value of P(0o) (bearing prior) evaluated at the measured value

(0 = 9) and the last is unity. Thus with the indicated definitions and ignoring the range dependence

(condition) of the spectrum density

Ad = P(o 0) P(SoIDo) f P(DolRo) P(80 fo I DRo) P(Ro)dR °  (8)

1 Ro

The expression for other segments has the same form, simply replace subscript o with the appropriate

I segment subscript.

A5 - PRIOR STATE - P(X)

The prior pdf of the geometric range, bearing state vector at the time of segments o and j is

given by

P(XG) = P(Ro08oRjlOj) (1)

Range and bearing densities are essentially independent so that

IP(X'0) =P(R 0 ) P(i0 ) P(Rjij I R0J0 ) (2)

I
I
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The third term can be evaluated from the known target speed and heading density P (V y) using the

Jacobian (J) transformation as given by

P(R0"j I RO ) = P(V 7)" J (3)

where -avv _ Cos Ri sin0

JaRjlj aRj a0j At

aY aR Y sine Rj Cos I
3Rja0 VAt VAt

where

I I is determinant notation.

0 is target heading relative to the line of bearing (0j).

thus,

j - V 
(5)

v zAt2

Note that target speed (V) is a function of (RoRji 0o) as given by

I
V = ID0 + Ro- Rj I/ At (6)

where

I
II is magnitude notation and R is vector notation. Do is the displacement vector of sensor

location at to relative to sensor location at ti. At = to - ti. I

A-8



A6- SHORT TERM ASSOCIATION

In the previous analysis the state prior could be removed from inside the 0 0e, integral since the

time difference between segments was assumed to be large. This was an important simplification

since the 0 A integrand was then gaussian and hence readily integrable. This assumption is valid for

CZ to CZ temporal association however it breaks down for short term or for mutual (simultaneous)

association.

This analysis develops the short term likelihood expressions using a different state vector.

In the long term temporal association formulation XG was defined as the range/bearing at the

times of the two segments as given by A3 (4).

For short term association a more natural state vector is

-- [RS0oV-fXG I 00y

where Vy are target speed and heading; V is assumed to be gaussian with mean V and variance ov 2 .

Then A3(5) can be written as

An = ff P(DIRoi o  7) P(SIDX-) P(Ro o)[ff P(V) P(YIXG) do0 V]dRo- (1)or
RcG I-X-J .- IF'y

Note that the detection and spectrum densities have been removed from the 0oV integral since they

are weak functions of 0and V and hence the measured value of 0O o%) and the a priori (mean) value

of target velocity (V ) are used.

I
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For comparison the previous 0 0 integral and the 0 0 V integral are rewritten below

* Long term (refer to C1(1))

F f f P(YIXG) do00 = f fP( 00 ) -P(OjI0j) P(YlIXG) d0002  (2)
03i o 00.j

* Short term

F'y = S S P(VIV) P(YIXG )d0V =(P(Fol0) P(vIV) PcIXG) doV (3)

Note that the forms are the same except that Oj is replaced by V and that Yj' includes all

measurables except 00 (recall Y1 excluded both 00 and 0j).

Referring to (3.6) and its solution (3.8) the solution to the OOV integral is given by

F - W e'-A~YiW'AY'i (4)

where

=r W'1 _(W, HI) (W'0 + HI1T W'1 H'E 1 (W'1 H'1 ) (5)

A Y,' is the difference between the measured values (excluding 00 and those predicted from

XG".,

where

XG" = [R0 W0 VYI

2 2W0is a diagonal 2 x 2 inverse covariance matrix with elements (1Ico 0 , 1Ioa2

Wtis a diagonal Nit x Ni' inverse covariance matrix with elements such as (1Ioo. lob 2,*,...

Note the variables included are all the measurables except 00

H j is the partial derivitive matrix of the Y1' measurables with respect to 0 0 and V.

N;is the number of measurables excluding 0 0. Thus if NY is the total number N1 N.

A-10
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I For comparison, the previous (long term) numerator likelihood ratios and the short term

expression (1) are rewritten below

0 Long Term

An = f P(Roi'oRjj) " P(DIXG') P(SIDXG') Fy dRoRj (6)

XG

* Short Term

An = ffP(Rooy). P(DIXG" ) • P(SIDXG") Fy' dRo7 (7)

The variables of the prior term are essentially independent so that

PlRo0,) = P(Ro) P(O) P(Y) (8)

Again assuming probability of detection to be a soft function of azimuth then

P(DIXG")= P(Do1Ro) P(DjlRj(XG")) (9)

The spectrum term is a function of the change in range rate between the two segments so that

P(SIDXG") = P(SIDAft(XG")) (10)

Thus the short term expression is

An P(Fo) f P(Do0 Ro ) P(Ro)fP(DjIXG")P(7) P(SIDXG") [Fy'] dRoy (11)
Ro  'Y

The denominator (Ad) is the same fo. che short term and long term formulations.

II
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APPENDIX B - GEOMETRY AND Ro j CONTOURS

B1 - MODEL

Nonlinear Own Ship Motion/Two Platforms

Consider the general case where the o and j th measurements are made from different platforms

(2 ships) or from the same ship with displacement caused by own ship motion. In either case Do is

the displacement between the position of the two platforms (ships) for the time interval At - (to - tj)

and 0 is the "heading" of the displacement line (vector).

The geometry is shown in Figure B1i.

(o80R 0D T - V At

(to)

TARGET
DO r. V0j R

OWN SHIP(S)

81-687

Figure BI. Geometry
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Definition of terms:

At = to - tj = time interval between measurements

Do, D own ship and target displacements during At

= "heading" of own ship displacement line/vector

y, V = target course (heading) and speed

Voo, rof own ship speed and heading at time to

Voj, rj = own ship speed and heading at time t,

0o, Oi = true bearing at times to and t.

A0 = 00 - Oj = bearing difference

Ro l R J= Range at to tj

Solving for the relative bearing rates at to and tj yields

1 f RjsinAO-Dosin(0-0)
Ro -- At + Voo sin (0o - ) (1)
0. - R. sin A0 - Do sin (0. - 0) + Voi sin (a.- j)f 1  At 1'.

Range acceleration (R) equals (-At) where A is wavelength. A also equals i2R so that frequency rate
is given by

At _02Ro

and

j2Rj 
(2)

B-2
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I
Linear Own Ship Motion

Assuming own ship is on a constant course and speed between points o and j, then r o  r

and Do/At " Voo Vo. Then (1) and (2) reduce to

SRj sin 0 Ro sin A
Ro At Rj at(3

R2(sin AO 2 - R02 (snA
=o At a - R.j At

B2 - TARGET SPEED CONTOURS ON A RoRj PLOT

The problem here is to determine how the prior target speed/heading uncertainty area maps into

RoRj space. The inputs/givens are own ship displacement (Do 0), the two bearings (0 o0j) and At.

Thus all lines in Figure B1 are known/fixed except the target displacement vector (DTr) or (VAt,Y).

For a fixed/assumed value of target speed (DT/At) variations in target heading will generate the desired

range pairs (RoRj).

The approach is to solve the two triangles of Figure B2 (also refer to Figure B1).

The range pair at the bearing crossover point ) is obtained using the law of sines so that

Rso = DO sin (Oj - 0)/sin AO
(1)

Rsj - Do sin (0 0 - 0)/sin AO

Note in passing that this would be the crossfix range solution(s) assuming zero target speed.

The true range(s) (RoR) differ from this crossover range (RsoRsj) by the increment aR o aRj

due to target motion as shown. Using the law of cosines yields the relationship betweenA Ro and

a Rj given the A0 measurement and the assumed target speed/displacement (DT) so that

. ARo2 +AR 2 _2ARo ARjcosAO

B-3



Thus given an assumed target speed and At then DT is known and A Ri can be solved as a function
of A Ro . The result is a contour in Ro Rj space as illustrated in Figure B3. Rotating 450 to a new
coordinate system ARo ' AR.' as shown and using (2) yields

ARo' 2  ARj' 2

1 a 2  + 2 (3)

Note that this is the equation of a ellipse with semi major and semi minor axes as given by

ao  = DT/V/1_ cos ao

(4)
DT/ + cosAO

Expressing the offset point (( ) in this rotated frame yields

Rso' Do i (sin 00 + sin 0j)

so ()sinA0

Rsjt D o (sin 0 0-sin Oj) (5)
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Figure B2. Geometry

CONSTANT SPEED ELLIPSE

RAR

I - 450

j Figure B3. Target Speed Contour
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B3- f CONTOURS ON A RoRj PLOT

Contours

Rearrangement of B1(3) yields the RoR j contours for 0o as given by

Rj sin AO

Similarily for [ s

Rj = (2)
OatI

sin AO8

Thus the ioij contours are simply straight lines as shown in Figure B4(a),

i Contours

Rearrangement of BI (3) yields

Ro =- A 2 /xio Rj 2  (3)

Similarly for

at 0 (4)

These f contours (3) and (4) are illustrated in Figure B4(b) including a perturbation on fo and fj

to illustrate the effect of i changeslerror.

B4 TYPICAL GEOMETRY
Consider the following conditions: Ro = 60 nmi, Rj 90 nmi, 00 = 45' , Vo 

= 20 kts, and

V = 15 ktsa Headings are 0 ° and 1800 for own ship and target respectively

B6



IUsing the law of sines (60/sin 0= 90/sin 1350 1 then 0 28.10, thus A0 16.90.

I Using the law of cosines, relative motion is obtained as given by

D = [602 +90 2 _2- 60 90 cos 16.901'= 37 nmi

then the time difference is given by At =/V + V) =1.03 hr.

BCONTOURS

R i (b)

R .

81-5W fCONTOURS

I Figure B4. efContours
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IAPPENDIX C - MEASUREMENT LIKELIHOOD FUNCTION DEVELOPMENT - (F )

Cl-F yFORMULATION

The measurement likelihood function with 600 integrated out is (refer to A 3(6))

Fy ffPY-I D XG) d'oo(1
oe0j 0j oj

Assuming normally distributed measurement errors and O00 replaced by A Xjfor generality) then

F y K y f e-"Q dAXo (2)
y ~AX0 0

where 1W yI is the determinant of the inverse of the measurement covariance matrix (diagonal) and

Q = (AY - H AX )T (Aya-HAXQ) (a

H = ay/ax (3b)

N y = number of measurements (elements in Y vector) (3c)

and,

AY0  = Y-Y 0(X0), aX 0 = X -X 0  (d

Ky = (2,r)NY/2 (V-1 WY) (3e)

Note that the measurements (Y) and the partials (H) have been normalized with respect to their

standard deviations (a). Define AX' to be the change in X relative to the optimum but unknown

solution (X*). Thus,

IAX 0 = AXO* +AX, (4)
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The optimum/mode is given by

AXo* f [(HTH) " HTJ 'a o  (5)
L_. A I.-.- II

The transformation matrix ]is designated A as indicated. Substituting (4) and (5) into (3a)

and expanding yields I

Q = Yo T [ (I-HA)T(I-HA) ] aY o  (6) 1
-2AXDT

[ HT(IH
x )l AY

+ AXT [ HT H I AX'

Note

(1) 1 (I-HA)T (I - HA) ] reduces to [I- HA] after noting that AH is an identity matrix

and HA is symetric.

(2) (HT (I - HA) I is zero since expansion yields [HT _ (HTH) (HTH) " H TI and

( )1( 0'=f1.1

With these substitutions (6) reduces to I

Q = T1- HAI Ao + AXTIHTHI AX' (7) I

Substitution into (2) noteing that Qy is not a function of X'allows removal from the integral hence

F = Ky e" h Qy f e"h Qx' dx'  (8)

Multiply and divide by the factor k = [ (21 Nx/2 H to make the intergrals Gaussian. Since the

Gaussian integral is unity, then I

Fy Ky e' % Qy (9)

C-2



I

where Ky I = Ky/k and Nx is the number of variables in X' (number integrated out).I
Using the definitions of Qy and ). in (7) and (5) yields

Qy TI- H (HTH)- 1 HT j A Vo (10)

Recall that A o and H are measurements and partials that have been normalized with respect to

Oy. Define the inverse covariance matrix of Y to be W This is a diagonal matrix with elements a y-2

Define the matrix vWy to be the matrix obtained by taking the / of each element. Using the (A)
y

subscript to indicate unnormalized (actual) measurements and/or partials yields

AYo = y AYA

H = Vr yHA

so that

Q = AYT [Wy-WYH (HTwyH) "1 HTWy IAYA (11)

Partition aYA into the variables integrated out (Yo) and those remaining (Y1 ). Wo and W, are the

corresponding inverse covariance matrices. Thus

AY AY H H,(12)

Substitution into (9) and (11) and matrix manipulation yields Qy and W as given by

Qy = AY 1 T [W1 -(W 1 H1 ) (Wo + HITWlH 1)' 1 (WlH 1 )Ti AY1  (13)

Ky Factor

The Ky factor (9) could be determined by matrix algebra, however a more straightforward approach

is as follows. Note that the density function integrand of (1) is assumed normal so that Fy is also normal.

From (9) and (13)
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Fy =Kyl e-% y 1 TWAY 1  (14)

In general, the n dimentional normal distribution of x with inverse variance Wx is given by

f(x) = _IxV e" xTWxx (15)

N (2 )n

By comparison of these two normal distributions then,

__ F -A (16)

N(2 1r)NI

where N1 is the number of measurables in Y, as given by (Ny - NO.

Final Solution

Substitution of (16) and (13) into (9) then yields

Fy = FW e'1h Ay1TWAY, (17)
(2 ,)NI

where,

W = W1 -(W 1 H1 ) (Wo + HTWIH 1 ) 1 (WIH 1 )T (18)

C2 - APPROXIMATE SOLUTION

Consider the use of 1/0 subscript notation to indicate effect/cause respectively. Thus W, as

currently written would be replaced by Wl/ 1 (W with measurement of type 1 was caused by

measurement type 1 (same)). W,/o would then mean W with measurements of type 1 caused by

measurements of type o. Thus [ J of (13) is rewritten as

W [ = W1 / 1 -W/ 1 [H 1 / 0 (H 1 /0
T Wl/1 Hl/o + Wo/00 Hl/o T ] Wl/I (19)
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A covariance matrix will be designated by M, the inverse of W (i.e., M1 / 1 = W1 /1
1 ). It can be shown

that a covariance matrix of one variable type can be transformed to another by the matrix operation

HMHT. For example, transforming from type o to type 1, yields

M1/o = H1/o Mo/o H/o T (20)

Similarly the inverse covariance matrices can be transformed using the operation HTWH. Thus

Wo/1 = H1/o T W1/1 H1/o (21)

then the [ J 1 term of (19) can be dissected as follows

I 1 = H1 /0 (H 1 /oT W1 / 1 H 1/o + Wo/o) 1 H 1 /oT

W /1 (22)

Wo/o1

Thus [ 1 1 = M1/1 is the joint covariance matrix of type 1 variables after estimation/smoothing using

both type 1 and o variables. It is obtained by determining the smoothed covariance matrix in terms of

type o variables (Mo/ 0 ,1 ) and then transforming to type 1 variables.

An alternate approach to obtaining M1 /0 , 1 and easier to interpret and simplify, is to first transform

Wo/o to Wl/o and then combine/smooth in type 1 variables so that

[ 1 i M1/ (H1/o Wo/0
1 H 1 /oT)l + W1 /11 -1  (23)

I WM /o

~~- /0

C-



Note that this would simplify if M1/ 0 was assumed to be diagonal, then Wl/o and 1 ] 1 are diagonal

and (19) reduces to

W* = Wl/I - W1 /1 (Wl/o + W1 /1 ) ' I Wi 1  (24)

Since Wl/1 is diagonal and W1 / 0 assumed diagonal then W* is also diagonal. Thus any/each diagonal

element can be determined independent of the others and inverses become reciprocals. Consider the i th

diagonal element and for simplicity let a = W1 / 1 and b = W1/o .

Then,

1Wi =a i - a, bi  a  ai  (25)

which reduces to

Wi 1/ai + I/bi (26)

where it is noted that 1/a i and 1/b i are the covariances Mi/ii and Ml/oi which are simpl, al/li2 and

l/oi 2 . Note ol/li2 is the variance of a type 1 measurement (Y1 )- 01/o2 is the var nce of the errors

in predicting Y1 due to the type o errors (Yo).

Ml/o i is obtained using the transformation of (20) so that

Wi = I T  (27)

1/i + H1 /0 M0 /0 H/ 1

For notational convenience this will be written as

, 1
Wi * (28)

ME + H1 i Mo HIT

Recall that M1i is the i th covariance (o~o2, ~2, ... , (000j not included). Hli is the (N1 x 2) partial

derivitive matrix of the N1 type 1 variables with respect to the two type o variables (0o0j). Mo is a

2 x 2 diagonal covariance matrix with diagonal elements o0o j
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I
Thus, since W* is diagonal, replacing W by W* in (13) yields the simple expression

N1
Qy fi AYliWi* (29)

i

Since W* is diagonal it's determinant IW*I is simply the product of the N1 diagonal elements

so that

N1
IW*I = rIwi* (30)

N1  N 1  (31)
K *= Ty W N*

(2-)

Substitution of (31) and (29) into (9) and adding the (*1 notation for the approximate olution

yields

IN, NI 2 N1 i* - A Yli 2 Wi*

=yWi*e " 1 . (AY1 i Wi*) = .2 e (32)

where,

1
W Mli + HEi M o H1 T (33)

Note that if the Y1 errors (Mli) are large relative to the M. variance contributions (HliMoH 1iT)

then W* 1/MIi.

C3 -- AN EXAMPLE

Consider the typical condition with bearing, bearing rate and frequency rate measurements

(0o0ofo and Bejjfj) for segments oj. Then, assuming linear motion (refer to B1)

AY -r1

a ly 1 1 (XG) I + r r 1 2 (1)

L j
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H -r' H12 a 0oij(2)1 +2rR. ", -H 1 3 a

+ - H 1 4

where X is wavelength, Xf is considered the measurable rather than i and

a R .asinA0 , cosAo
, - - (3)I

Ro '-at ' at()

AO and At are the measured bearing and time differences. The second column of H1 is the

negative of the first column. I
W1 is 4 x 4 (NI = 4), diagonal with elements that are the reciprocal of the measurement covariances

(M 1 ) elements ( 0 20  i 2 o j2). ( )are the elements of Mi, i = 1,2,3,4. Wo (similarly) is 2 x 2

diagonal, with elements that are the reciprocal of the 0o j covariances (Mo) elements. If the simplified

~Iform of W* is used then the M* covariances are

i /W i*

1 o 0 2 + (r ') 2 002

2 a00 2 + (r-l  ')2 00 2  
(4)

3 OXio 2 + (2r Rj 4') 2 
0

2  I
wer, 4 a, 2 + (2r"1 Ro0 ') 2 002

where, I
o2.2+ a 2  I

00 2 0o02 + G j2

then, for example, one of the Fy factors(Fy 1 )(applying to the 00 measurement) is given by

1 exnF r. R.jsin A0 )2
FY V2vMIF O--E3 Me* (5)I

I
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C4 -REDUCTION USING A0 FOR SINGLE SHIP WITH LINEAR MOTION

As shown in B1(3) the measurables 0ofo0if j (plus 0.0j) are a function of A0 (and RoRj) and hence

the double integral of C1 (1) reduces to a single integral with variate A having variance 0 A 2=

0002 + o0 i2. Thus the term ( )' of C1(13) is a scalar given by (note Hi a aYli/a0)

0o/0,1 l~ .+z 2: (1)
([aGo2  i OYU)

Thus manipulation of C1(13) yields

W =W - (W 1 H1 ) (WlHI)T M0 /o, 1

and

Q AYITWajY - (HITW1 AY 1 )2 Mo/o,1  (2)

or

2 _ ';H ~ 2 M o/, 1 (3

1Y~

C-9/C-10
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APPENDIX D - DEVELOPMENT OF FREQUENCY SPECTRUM LIKELIHOOD RATIO

D1- LIKELIHOOD RATIO

Assuming cell to cell independence and nc cells thenI :c

AS fcAi (1)

where the likelihood ratio for a typical ith cell is given by

I P(SiDijA)
Ai  = (2)1 P(SiD ijA)

SD1 is the amplitude/detection information for the ith frequency cell. A is the condition that the twog data segments (complete frequency spectra) are associated; i.e., both have a common origin (target).

A means they are not associated. These can be interpreted as 0-1 hypothesis (H1 
= A, Ho = A).

D2-MEASUREMENT AND STATES DEFINED

I The target will be modeled as a source with nT frequency lines. This is the mean number of lines

detected in two segments (segment oj). The line amplitude (Xi) (without fluctuation) is defined by the

probability density function P(X i) or simply P(X). Fluctuation is considered log norma! with standard
2

deviation aF. Probability of fade is PF" Extraneous lines are also present; uncorrelated from segment

to segment with the mean number given by nE.

Thus the measurements are

V Sol [ .... Si .... Sonc 1 -segmentoj

and the target variables are (nT, OF, PF) and amplitude Sx with Pdf P(S.).

The prior conditions are defined in terms of detection (D) and correlati.,n (C) states for each

association condition (A or A).
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There are four binary detection states D1 1 , D0 1 , D 10 , D0 0 where D1l means the target (T) is

detected in both segments, D0 1 means no detection in one segment and detection in the other, etc.

There are two correlation states. One where no extraneous (E) lines are present (C) in the cell;

the other where E lines do exist (uncorrelated) (C) in the cell (in one or both segments). Evaluation

of (2) for each cell depends on the likelihood functions of the measurements (S, D) and the states

IS, D, C1. Assuming the amplitude distributions of target and extraneous lines are the same, then

(Appendix El) the expected likelihood ratio of (2) for one of the cells of type m (defined below) is

given by

Am PSICD P(DCIA) P(DCIA) (5)
= (SICD) P(DCIA) P(DCIA)

,-A s m .j L--.Xml' L- ,m2

where Asm is the expected likelihood ratio conditioned on the CD states of a cell. The other terms

are a priori probability of the cell DC states conditional on association/nonassociation (the existance/

nonexistance of the same target source in both segment.).

The form of the terms of (5) depend on whether the cell contains two lines (detection in both

cells), one line or no lines. Using index m to make this distinction, let m = 2, for two lines, m = 1,

for 1 line and m = 0 for no lines. Then (5) is written as (for the ith cell)

Am = Asm Xml + Xm2 m = 0,1,2 (6)

Then the total likelihood ratio (1) is given by

n2  n 1 n o
AS = TT (As2 )21 + X2 2 ) TT (ASll 1 1 

+ X1 2 ) I ?o (7)

where,

n2 = number of cells with two lines (m - 2)

nj - number of cells with one line (m - 1)

no  = number of cells with no lines (m - 0)

D-2



I
I

D3 LIKELIHOOD RATIO (Asm) DEVELOPMENT

Asm is evaluated by integrating over X and applying Bayes' Rule (Appendix E2) to obtain

AP(So DoIX) P(SjDjIX) P(X) P(DIC) (8)

Jf P(SoDoIX o ) P(Xo)I lI P(SjDjIXj) P(Xj) I P(DIC)
| X0

Fm  ----- --- Gm-
IJo

If So is not detected then P(SoDoJX) = P(DoIX); similarly for Sj (Appendix E2). Note for

I cells with no lines (D0 , Dj), (8) reduces to [Asm = 1]

If only the detect/no dete-t event ip -ecorded (amplitude not recorded) as in a clipped processor,

then 'Appendix E2) [As 1 = As2 = 1i. Consider eac7h in turn.

I
As 2 - Double Detection

I For detection state Dl 1 where detection occurs in both the o and j segment (m = 2) then,

A f NoN j P(X) P(D o Dj)

s2 fNo P(X fNj P(X " P(D o ) P(Dj)

L_- F2  . G2

twhere No and Nj are normal distributions of the measured amplitude conditioned on amplitude state X.

These are likelihood functions; a function of X. Do and Di are the detection events of segments oj.

IP(Do, Dj) for instance is the joint probability of the measured detection events in cells o, j given that a

detectable target line exists.

As developed in Appendix E5

Ad N so - Sj  ex (Save -+.F)(9)

where So and SJ are the measured amplitudes in segments o and j, Save is the average amplitude, T is

the threshold, OF2 is the variance of the log normal fluctuation distribution and Ais a factor in the

prior amplitude distribution (E5). It can be shown that PF - AO where PF is probability of fade.
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As1 - Single Detections

For cells with a detection in one segment (e.g., o) but not the other U) then;

fN0 P(DjX) P(X) P(DoDj) (10)

A fNoP(XfP(DP4FX P(Do) p4i)

where D is the measured event that no detection occurs in the jth segment. The second intergral in the

denominator is, by inspection, equal to P (Dj) and hence cancels as indicated. Following the same

assumptions and techniques as developed in Appendix E6.

A1 -2 (2Xo e''

Note that the same expression applies when only the ith segment is detected; simply replace

so with Sj.

Ao- No Detection

By inspection (Appendix E2)

Ao  = 1

This completes the development of the likelihood (Asm) terms of (7). Now consider the a priori

terms (Xml, Xm2) for m = 1,2.

D4 - PRIAR DISTRIBUTION TERMS OF D2(6) DEVELOPED

These terms (Aml, Xm2) express the a priori probability ratios for the various detection/

correlation states (DC) conditioned on the presence (A) or non presence (A) of a common target in both

segments.

As developed in Appendix E7, these ratios are given in terms of the target/extraneous line ("noise")

parameters previously defined (nT, nE, PF). The results are given in Table D-1.
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TABLE D-1 -xTERMS

\2- Double Detection

X2 (1 -PF) nTnC /nE' 2

N- Single Detection

X~11 = 2~ nT / '

where,

n nE + 1

No Detection

n o e F (Refer to E8)

where,

no nC -(nl + n2 )

Thus the complete spectrum likelihood ratio is given by (7) where the terms As2 and A., are given by

(9) and (11) and the X~ terms given in Table D-1.
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I
APPENDIX E - BACKUP ANALYSIS FOR APPENDIX D(ASDEVELOPMENT)

El -EXPANSION/DEVELOPMENT OF P(SDIA)/P(SDIA)

For a given cell, As is given by (cell subscript (i) is implied).

I P(SA)
AS = P(SIX) (1)

where S?, b are measured amplitude and detection events respectively, and A, A are the association,

9 non association conditions respectively for the complete spectrum. Recall that D can take on one of

four "values"; detected in both segments Dl 1 ; detected in only one (D0 1 , D 1 0 ) or no detections (Doo).

S D is a function of whether or not the cell contains an extraneous line. If it does then the segments

I are uncorrelated (C) otherwise they are correlated (C).

Including the correlation state variable (C) with the two possible values (C, C), and summing over
the two values yields

AS = IZP(SDCIA)/EP(SDCIA) (2)

c c

Applying Bayes' Rule yields

I A S  P(SICDA) P(DCIA) / 2 P(SICDA) P(DCIA)

c c

I P(SICDA) P(DCIA) + P(SiCDA) P(DCIA)
P(SICDA) P(DCIA) + P(SICDA) P(DCIA) (3)

Note that the cells cannot be correlated if unassociated hence P(DCIA) = 0; hence the first

denominator term vanishs.

I Assuming that target and extraneous lines have the same distributions, than the amplitude

densities (SI -) are a function only of the correlation condition; the association condition (A,A) being

i irrelevent so that P(SICDA) - P(SICD), thus

E-4
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A P(SIC!D) 1 P(DC A) +P(D? IA)
P(SICFD)J P(DCFI-A) (4)IA

Aim

E2 - EVALUATION OF A sm

_P(SDIC) / P(DIQ)
P(SDIC) / P(DIC) (2)

The amplitude terma of the numerator and denominator are determined by introducing the state

variable X to the joint density function and then integrating it out to obtain the desired maiginal

densities. Thus,

P(SDIC) = f P(SDIXC) P(XIC) dx
x

(3)
P(SDIC) = f P(SDIX-) P(Xl-) dx

x

Substitution into (2) then yields

fP(sDIXC) P(XIC)dx
X P(DIC)Asm =f P(SDIXZC) P(XIC)dx P(DIZC) (4)

x

Recall S = (Oj.For the correlated condition (q) a single state (X) applies. For C, different X

apply (X0 X1 ) so that (dropping the correlation notations)

f P(S0 D0 IX) P(SjDjIX) P(X) dx PDC

"a P(SODIXO ) P(x ) dx 0 P(S D .I X.) P(X1) dxj P(DIC) (

Consider the detection and no detection condition that may be measured for the o or j segment.

Applying Bayes' Rule for segment o (similarly for j) yields the alternate expressions

P(S 0D0 IX) - P(D 0ISO X) P(S0 IX) (6)

a P(D0 IX) P(S 0ID0X) (7)
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If detection occurs (Do  DO) then applying (6)

P(DoISoX) P(DOIS o ) = 1

thus, (8)

P(SoDoX) = P(SoIX)

If no detection occurs (D o = D0 ) then applying (7)

P(SoIDoX) = P(S 01DO) = 1

thus, (9)

P(SoBoIX) = P(DoIX)

In conclusion, the result (Asm) is given by (5) noteing per (8), (9) that

P(SoD 0 IX) = P(S 0 X) for the detection condition 
(10)

= P(D0 X) for the no detection condition

The same applies for segment j.

Clipped

If only the detection event is recorded (no amplitudes) then

P(SoDoIX) = P(DoIX)

or, (11)
P(SjDjIX) 

= P(DjIX)

I
Then the numerator integral of (5) equals P(DoDjIC) or simply P(DIC) and the denominator integral

equals P(Do) P(Dj) or simply P(DIC). These terms then cancel with corresponding terms so that

Asm = (12)

E.3



E3 DETECTION TERM DEVELOPMENT WITH Q APPROXIMATIONS

Several detection terms will be developed as given by

1. P(Do)(1 ) = Probability of detection given the existance of a detectable line i.1 a single

segment cell.

2. P(DoDj) =  P(DoDjIC)

= Joint probability of detection given the existance of a correlated line

(same target) in a common cell of both segments.

3. P(DoiDj) = P(DoDIjC)

= Joint probability of detection in one cell and no detection (D) in the other

given the same conditions as in 2.

P(D) is obtained by introducing the state variabl, (X) and integrating it out so that

P(Do) = f P(DoX) d x = fP(DoIX) P(X) dx (1)
X X

Similarly,

P(D o Dj) = fP(DIX) P(DjIX) P(X) dx (2)

P(DoDj) = YP(DoIX) P(DjIX) P(X) dx (3)
X

P(DoIX) and P(DoIX) Development

P(DoIX) is the probability that the amplitude (SO) exceeds a threshold (T), conditioned on X.

The conditional probability density function of amplitude is P(SIX) so that

P(D0 IX) 7 P(SIX) ds (4)

Assuming a Gaussian fading model with variance a2 as previously discussed, then

e" ' S- X

P(SIX) - a N( (5)

(1) P(D)i P(Do) and P(- 0 D -- P(DoDj)
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Then, substitution into (4) and defining P(DIX) = Q or Q(X) yields

IQ P(DIX) = _f_ N(S ds (6)

Note that this has the form of an error function (ERF). For X>T, a good approximation is

I -T 
(7)Q~ ~ -aPI) L1.

Since P(DoIX) = P(DjIX), then P(DIX) (DjX)= Q2. An approximation to Q2 is obtained by

inspection of plots of Q and Q2 (Refer to Figure El). Q2 is essentially the same as Q with an X

shift of about 0.5a.

i Thus,

()Q - (8)

I Thus, from (7)

Q P -, I,5a

Note that if a line is present (detectable) it is either detected or not detected so that

P(DIX) 1 - P(DIX)

- Q

I Substitution of (7), (9) and (10) into (1) - (3) yields

I P(Do ) = P(Dj) = fQP(X)dx
X

P(DoDj) = fQ2 P(X)dx (11)
X

P(DoD j ) " P(DoDj)

I = OQ(1- Q) P(X) dx
X

I where Q and Q2 are given by (7) and (9).
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E4 - EVALUATION OF NA

IThe expression to be developed is given by

I NA = fNoNj dx

where No, N. are normal distributions of So, Sj with true value X. Thus, for equal variances

e dx (1)

Refer to Figure E2.

Completing the square yields

Since the first exponent is independent of X, it can be removed from the integral so that

-, [°-  o 2,
f/2 2 (3)

Ne v- o/ ) f/ivf2- dx

Since the integral is a normal distribution, integration yields unity so that

I NA

NA 
e

or, (4)

N N S0

For the more general case where the o's are unequal, define a =SO b =S then

J(a-x 2 2b-x
NA = e-e b dx (5)

1X N"-,r a
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completing the squares yields

La = [Oa N/ b) IN (%,x) dx (6)

where,

Uab = \/a a2 + O2 (7)

= 1 (8)

=FY2 2
0a 0b

thus,

The integral is also unity, thus (6) reduces to

~NA = N /a ) (9)

or 
'/ ab

NA = eab Gab) (10)

E5 -A S2 DEVELOPMENT

A
AS2 F2/G

F2 Development

F2  1 No P(X) dx pNP(X) dx()

Consider the numerator of (1) and Figure E2.

E-9



As shown in the development of NA, (Appendix E4), NON i reduces to a single normal distribution

with mean at (So +8.1)/2= Sae

Assuming P (X) is linear in the region of Save and noteing that No N.i is symmetrical about Save,

then the numerator is

F2 (num) P (Save) fN 0 N idx (2)

The integral term is NA (Appendix E4) so that

F2 (num) N NP (Save) (3)

Consider the denominator of (1) and Figure E2. Assuming, again, that P (X) is linear in the

region So ±a and S , thenj

F2 (den) IP(5 0 )fNO dxJ P(S'yf Njdx j
x X

= P(S0 ) P(S i) (4)

Finally, since F2 =F (num)/F (den) then

F2  NA P(Save)5
2 P(5 0 ) P(S 1 )

Assuming the exponential form for P (X) P (X) A-X then

P(Save) Xe- Save

P(50 ) F(S1 ) Xe-XSo Xe-X5 j

e+X Save(6

Substitution into (5) yield.

F2  eNA Sav (7)
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where

N( ) (8)

G 2 Development

G P(DoDJ)2 P(Do) 2

Using the approximation of P (DD) and P (D) given by (7), (8) and (11) of E3 yields

= Q2P(X) dx fQ(X - -. 50) P(X) dx

2  - P(X)dx1 2  [fQ(X-T )P(x)dxl2

Assuming that P(X) is broad relative to u, then Q and Q2 are essentially step functions at (X- T)

= 0 and 0.5 respectively so that

(X) dx
+ 0.50

G2 (11)
[G [P(X) dx 12

T

Assuming an exponential distribution for P(X) as given by

P(X) = Xe' XX (12)

then substitution into (11) and integration yields

G 2 = e+X (T-0.5 o) (13)

Combining the F 2 and G 2 factors yields

'I F 2

AS2 = 2

- x Save / eX (T - 0.5 o) (from (7) and (13))

e (ae -T + 0.5 a)Nex (ave (T

- N A e 8 v T 0 5 o (14)

IA
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Substituting NA from E4(4) yields

(SS A(Save - T + .5 a)
e s% - 2)

AS2  (15)

E6 -As 1 DEVELOPMENT

AS, F1/G 1

F 1 Development

fN 0 (1 - Qj) P(X) dx

xF 1  = . NP(So) dx (2)

As shown in the development of F2 , the denominator is P(So). Assuming that P(X) is relatively flat,

then PiX)/P(So) 1 so that, (refer to Figure E3(a))

F1  fN 0 (1-Qj)dx J
x 3)

1 -fNoQj dx (

xi

Note that Qj is the integral of a normal distribution (Nj) integrated from the threshold (T) to

(probability of detection given X). Then, substituting this integral and reversing the order of

integration yields

F 1  = 1 -?[ZNoNj dx I dSj (4)

As shown in E4 the inner integral f J is a normal distribution of the amplitude difference

(Sj - SO) so that

F1  I- dSj (5.1)
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The integral is a Q function so that

F1  = (T-o) (5.2)

Then, using the Q approximation of E3 yields

F1  0. 5 e-0 8 1\7 a) (6)

G1 Development

-P(DD)7

G, P(D)(7

Using the detection terms of E3 yields

J Q(1.Q) P(X) dx
x

Gi -_QP(X) dx

(8)

f(I-.5 e--8 x) P(X) dx

where

x =(X -T)

Assume that P(X) is essentially linear in X and note that Q (1 - Q) is symmetrical about X =T

(refer to Figure E3(b)). Then P(X) can be replaced by P(T) and integration yields the numerator term

G, (um)- 2P (.5 e-' .25 e'l
G1 (u)2(T) .8o 1.60 / X

-.5a P(T) (10)
.8

a! a P(T)
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Consider the denominator term of (8). As developed for G2 using the broad P(X), Q step

function approximation and P(X) = ,e'A X , then,

G1 (den) = f P(X) dx
T (11

= e-AT = P(T)/X

Finally, since G 1 = G1 (num)/G 1 (den), then

G 1  = ,(12)

E7 - -A PRIORI PROBABILITIES -

The problem here is to determine the a priori probability ratios (Xmi, )m2), m 0,1,2. These X

are a function of the probabilities P(DoDJ CIA) and P(DoD CIA).i
Consider first the association condition (A) where a target and hence correlated lines can exist in

the cells. The approach is to develop a probability tree enumerating all target and extraneous line

conditions and the probabilities of each.]
Define T, T as the existance (detection) of a detectable, not detectable target line respectively.

Similarly, for extraneous lines (E E).

I If Eo is dominant over T o (extraneous amplitude exceeds target amplitude), then T o is treated as

a non existing line (TO). Probability of this occurrence is 0.5 assuming T and E have the same

amplitude distributions.

The probability tree enumerating all state/substates and their transition probabilities is shown

in Figure E4.

Definitions

I nT - expected number of detectable target lines

nc = number of cells

i E-15
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I
I

nE = expected number of extraneous lines

PF = probability of fade

gAt the initial node, as indicated, nT/nc is the probability of a target, (correlated line) being

detected in either segment. Next, (1 - PF ) is the probability of no fade given a line and hence detected

in both segments (M). Given this condition, the probability of being in each of the four E states is

indicated. Note the probability of no extraneous lines (Eoj) - For the other three E
nc

states (an extraneous detection in one or both), an additional branch is shown. If the detectable

extraneous line exceeds threshold (E > T), it is assumed that it will mask the correlated target line

thereby resulting in the detections being uncorrelated (DDC). As indicated, the probability of

detection given a detectable E line is .5. The other branches and probabilities were similarly developed.

i
The final states are then grouped as indicated. The first group, for example, applies to a correlated

gdetection in both cells (DDC).

The probability of occurrence of each of these final (detection/correlation) states is obtained by

adding the probability of each path indicated, where the path probability is the product of all the

branch probabilities back to the start.

The resulting probabilities are given in Table E-1. Recall that all of the above applies to the

association condition, i.e., the existance of a correlated target in the two segments.

Nonassociation Condition

The comparable probabilities under the nonassociation condition (A) are developed by a straight-

forward modification of the previous results for the A condition.

In each segment the expected number of target lines is given by

nTo n T (1 - PF/2)

E-17



TABLE E-1 -DDC A PRIORI PROBABILITY EXPRESSIONS

FOR ASSOCIATED CONDITION

E) En _ n)

P(DDCIA) = i (1PF)[(1--~ + 2(.5)- (.5)).() )]

nc c

c fccL c

P(DDCIA)2

P( DD)A c

n

P(DD IA) P ( IA )

P(DDC A) =.2 P(DDCIA

nEE



Add this to nE to obtain the new nE as given by

nEo =nE+n T (1-PF/2) 4nE'

and set nT =0 in the previous association analysis. The resulting probabilities are given below in Table E-2.

TABLE E-2 - DDC EXPRESSIONS FOR NONASSOCIATED CONDITION

P(DDCiA) =0

lnE\
P(DDCIA)

P(DDCIA) = 0

InE\ 2
P(DDCIA) = 1- I-

nc/

As previously defined, the A 's are defined as follows and the above probabilities substituted to obtain

the results of Table E-3.

TABLE E-3 -X

~21 = P(DDCI-A) ( '

22 = P(DDCIA) nE (nE + T

22P(DCIA) (nE) 2

11P(1 5-JA) nTPF

P(PDC IA) 2nE'
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TABLE E-3 - A (CONT'D)

= P(PDCIA) - nE
~12 P (PDDC IA) nE'

X0P(DDI1A) ___1__PF

0 = P(DIA) nc

no
E8 -APPROXIMATION TO 11 X

no
The problem is to obtain an approximation for F if [X01 As given by the final expression of E7

NO 1+x (1)

where

nT (1 - F(2

nc

thus

n
F 17 X0 = X0

(3)
1 (+ x)no

where no is the number of cells with no detections as given by

Taking natural logs (In) yields

InF noln (1 +x) (5)

Expanding In (1 + x) in a Taylor series noting that x is small (of the order of 0.01) yields

lnF =no [x- X2 /2 +...j (6)
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Neglecting x2 and succeeding terms and substituting (2) and (4) yields

nT (1 - PF )

lnF = Inc -(n l +n 2 )(
nc (7)

nT (1 - PF)

Taking the antilog yields

F = enT(1-PF) (8)

E9-EVALUATION OF AS2tot

The total frequency likelihood ratio for cells which match (detection in both segments) is given by

AS 2 tot = AS2X 2 1 +'22 (1)

AS2 is given by (15) of E5 and X21, X22 by Table E3 of E7. Substitution yields

F (-'P nTnc 1 nE (nE + n T )  
(2)

S2tot = AS2L E + (1 -_F/2 ) nw] [nE + (1- PF/2) nTJ 2

For insight assume that PF is small and define r c and rE as the normalized values with respect to nT

rc = nc/nT

rE = nE/n T

then,

rc rE
AS 2 tot = AS 2  r 1 + (3)

t~t (rE) 2  1 +rE
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Clipper Processor

For the clipper processor, AS2 = 1. Let rc = 200. Note that x22 is significant only for large

values of rE and then it's value is unity. Thus,

Ac - rc +S2tot (4)

ncnT
+1

(nTp+nE)
2

Amplitude Processor

If amplitude is available, then as given by (15) of E5, the match likelihood ratio is

I

'/2A S2 1AS2  e -- - 2 eP F (6 S+.5)

A2 i"V-2 PF

where,

/ sO-s.
'S" = 0-S-a = normalized amplitude difference

s o +S S
2 T

2

6 S F normalized average amplitude relative to threshold

Note the identity substitution PF = NOF has been made.

Then,

[S2to AS2  rE)2 + 1 (6)

tt (1 + rE) I

Figure E5 is a plot of AS2 vs PF for various AS, 6S. Note that for practical fade probabilities

say 0.1 and 0.3, A is fairly sensitive to PF"

Figure E6 shows sensitivity to AS and various 6 S with PF set at 0.2.
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g APPENDIX F - LIKELIHOOD RATIO FOR BINARY ASSOCIATION -

HYPOTHESIS TEST WITH LINE DETECTIONS AND MATCHES AS MEASUREMENTS

- An Initial, Simplified, Frequency Likelihood Approach -

INTRODUCTION

In this appendix there is presented a combinatorially oriented derivation of the likelihood ratio

for testing the association between track segments based solely on measurements conveying the detection

or nondetection of matching tonals.

gThe treatment differs most importantly from that found in Appendices D and E in that,

i. The a priori information is given a different parametric description,

ii. extraneous lines are here not permitted (false-detection probability from noise

alone is assumed zero), and

iii. the amplitudes of the detections do not here constitute part of the measurements.

As a consequence of iii, the development here should be compared to the "clipped case" development

of Appendices D and E. In making that comparison, it is seen that in both cases the log likelihood ratio

is a linear function of the same two measurements; the number of matched lines between segments, and

the total number of lines, matched and unmatched, in the two segments.

MODEL

A source is characterized by ns tonals. The receiver has nc FFT bins; at times ty and (later) tz, ny

and (later) n. tones are detected, and n2 of the ny and nz "match" in frequency. Hypotheses are:

H1  - Same source at ty and t z

Ho  - Different sources at ty and tz .

Note in the previous analysis, to and t. were used rather than tz and ty, respectively.
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Likelihood ratio is

A~n2ny~n PHI (n2,nylnz)

A(n 2  Z) PHo (n2ny(1)

ASSUMPTIONS

1. ns has Poisson distribution with mean m;

2. Source tonals are distributed at random across FFT band;

3. p = probability of detection, given that a source tone is present, is same for every tone;

4. Doppler shifts ignored, so that "match" means detection in same FFT bin at both t y and tz;

5. Negligible false-detection probability from noise alone; and

6. nc >> ny, n z , or n 2 .

ANALYSIS

Under H 1 , ny and nz are the number of successes in two independent experiments of n. Bernoulli

trials each, with single-trial probability of success given by

p =Prob lin

(detected) (2)j
for each of the n s cells.

Under Hog ny is the number of successes in n c trials with single-trial probability of success given byo 
cnsy

nc

and similarly for nz, with

Pz p 2  (4)

n
c

where nBy and nsz each has a Poisson distribution with mean m.
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Note that under H 1 , n 2 is distributed as the number of red balls obtained when nz balls are drawn

I without replacement from an urn containing ns balls of which ny are red, so that

n .- n yI (()()
(nn:)

while under Ho, n2 is distributed as in (5) but with n. replaced by nc .

UNDER H 1

PH1 (n 2 , nyn) n =0 P(n 2 ,nt ns)

I P (n 2 ny, nn) P(nyIn.) P(nzlns) P(n.)
0s  G2 (no- n2) P~zns) nPjy~s znS n s)

I ; n (nn) ~(~:-n2) pnyqnsny( )pnzqns -  mns em (6)

ns~~~o nszy (6

where

q p.

I Expanding (6) with

( r!(kr)! 
(7)

f and using

n (mq2) (m2(n y +n n 2 
(emq

2

n. = 0 (n. -:,ny + n z - ni)! = (8)

yields

S(Py n  
(ny+n n 2 ) m(q2

PH (n 2 ,nytn5 ) m 11 (mq 2  
e (9)mq 1n 2 ! (n y - n2 ) ! (n z  n 2 )!
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UNDER H0

( 2.ny~n2 )= P (nynZ sl (10)

~H (n ~ n =0

00

I =0 P (n2Ilny 1nzH 0) P (n In.y) P (nzinsz) P (n5 ~ P (naz)

00 n2) (n n2  (pn )sy e -fl pn Pnhz) 7epn sz mn sYem Innsze-m

where we have used the Poisson approximation to the Bernoulli distribution for P (n yIn5s) and P (nzlnsz),

e.g.,

(nyInsy) =(' ) (p )fl (P ) n cc

(pn sy)nY e -pnsy

Evaluating (11), we obtain

(n. n y)! (n c nz)! pny +flz e2m(e-P.-1)
PHO (n2,y n2 !(n~ Y-n 2 )! (nz - n2 )! (n - [n y+ n - nP]! n! v1n (p vn(j (13)

where

;A me-p (14)

and Pr(;J) is the rth absolute moment of a Poisson variate with mean p

k 0 k! 
(5
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so that(*)

i
r iPr(Il)

j 0 1
1

2 114 + 1)
3 P GI2 + 3 m + 1)

4 M(3 + 6 p2 +7+1)

I Combining (9,13-15) gives

A (n2,nynz) = F.(mq)ny + n z  em[ 2 (l - e'P) - p(2 - p)]
(mq ) 2 Pny (meP) vnz (me (16)

where

I nc! (nc - [fny + nz - n2 ])! (
r)= (17) (nc - n y )! (nc -nz)!

Using Stirling's approximation andI
(1+l/n) n z eforn>>i

we have, for nc >> ny, nz or n2 ,

( 2  , e = 2.71828... (18)

and (16) becomes

(n2 ,n n) nc  n2 . (mq)ny + n z  em [2 (1-e  P)- p (2 - p)]

mqe2 Vn y (meP) nz(meP)

(*) Burington & May, "Handbook of Prob. & Stat." Handbook Pub., Sandusky, Oh 1953;
pg. 77.
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Note that (19) is dominated by the value of n2 , and is symmetric in fly and nz. Figure Fl sketches

for various combinations of n 2 , fly, and nzthe variation of log A as a function of p with nc 400 and

m =5.

NC I 0
4 LEGEND:

n2 2: -

0: -- --

{ 123,3

1.

2p -
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